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Abstract

We investigate the distributions of ε-drawdowns and ε-drawups of the most liquid futures
financial contracts of the world at time scales of 30 seconds. The ε-drawdowns (resp. ε-
drawups) generalise the notion of runs of negative (resp. positive) returns so as to capture
the risks to which investors are arguably the most concerned with. Similarly to the distribu-
tion of returns, we find that the distributions of ε-drawdowns and ε-drawups exhibit power
law tails, albeit with exponents significantly larger than those for the return distributions.
This paradoxical result can be attributed to (i) the existence of significant transient depen-
dence between returns and (ii) the presence of large outliers (dragon-kings) characterizing the
extreme tail of the drawdown/drawup distributions deviating from the power law. The study
of the tail dependence between the sizes, speeds and durations of drawdown/drawup indicates
a clear relationship between size and speed but none between size and duration. This implies
that the most extreme drawdown/drawup tend to occur fast and are dominated by a few very
large returns. We discuss both the endogenous and exogenous origins of these extreme events.
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1. Introduction

Traditionally, market risk is proxied by the distribution of asset log-returns r
(∆t)
t on dif-

ferent scales ∆t. Such distribution for most assets in various classes is well-known to have a
power law tail Pr[r

(∆t)
t > x] ∼ x−µ with the “tail exponent” µ in the range from 3 to 5 both

for daily (de Vries and Leuven, 1994; Pagan, 1996; Gopikrishnan et al., 1998; Cont, 2001;
Malevergne et al., 2005) and intraday returns (Chakraborti et al., 2011). Though the second
and possibly third order moments of the distribution exist, the traditional volatility measures
based on variance of returns are not sufficient for quantifying the risk associated with extreme
events.

Much better metrics to capture systematic events are the so-called drawdowns (and their
complements, the drawups), which are traditionally defined as a persistent decrease (respec-
tively increase) in the price over consecutive ∆t-time intervals (Johansen and Sornette, 2001).
In other words, a drawdown is the cumulative loss from the last maximum to the next min-
imum of the price, and a drawup is the the price change between a local minimum and the
following maximum. By definition, drawups and drawdowns alternate: a drawdown follows a
drawup and vice versa.

In contrast to simple returns, drawdowns are much more flexible measures of risk as they
also capture the transient time-dependence of consecutive price changes. Drawdowns quantify
the worst-case scenario of an investor buying at the local high and selling at the next minimum
(similarly drawups quantifies the upside potential of buying at the lowest price and selling at
the highest one). The duration of drawdowns is not fixed as well: some drawdowns can end in
one drop of duration ∆t, when others may last for tens to hundreds ∆t’s. The distribution of
drawdowns contains information that is quite different from the distribution of returns over
a fixed time scale. In particular, a drawdown reflects a transient “memory” of the market
by accounting for possible inter-dependence during series of losses (Johansen et al., 2000;
Johansen and Sornette, 2001). During crashes, positive feedback mechanisms are activated so
that previous losses lead to further selling, strengthening the downward trend, as for instance
as a result of the implementation of so-called portfolio insurance strategies (Rubinstein, 1988).
The resulting drawdowns will capture these transient positive feedbacks, much more than the
returns or even the two-point correlation functions between returns or between volatilities.
In contrast to autocorrelation measures, which quantify the average (or global) serial linear
dependence between returns over a generally large chosen time period, drawdowns are local
measures, i.e. they account for rather instantaneous dependences between returns that are
specific to a given event. Statistically, drawdowns are related to the notion of “runs” that is
often used in econometrics (Campbell et al., 1996).

This paper presents an analysis of the statistical properties of intraday drawdowns and
drawups. Our tests are performed on the most liquid Futures Contracts of the world. Our
results are thus of general relevance and are offered as novel “stylized facts” of the price
dynamics. We discuss and quantify the distribution of intra-day extreme events, and compare
distributional characteristics of drawdowns with those of individual returns. In so doing, we
discover that the generally accepted description of the tail of the distribution of returns by a
power law distribution is incorrect: we find highly statistically significant upward deviations
from the power law by the most extreme events. These deviations are associated with well-
known events, such as the “flash-crash” of May 6, 2010. Statistical tests designed to detect
such deviations confirm their high significance, implying that these events belong to a special
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class of so-called “Dragon-Kings” (Sornette, 2009; Sornette and Ouillon, 2012): these events
are generated with different amplifying mechanisms than the rest of the population. We show
that some of these events can be attributed to an internal mutual-excitation between market
participants, while others are pure response to external news. As for extreme drawdowns,
there are in principle two end-member generating mechanisms for them: (i) one return in
the run of losses is an extreme loss and, by itself alone, makes the drawdown extreme; (ii)
rare transient dependences between negative returns make some runs especially large. We
document that most of the extreme drawdowns are generated by the second mechanism, that
is, by emerging spontaneous correlation patterns, rather than by the domination of one or a
few extreme individual returns.

The paper is organized as follows. Section 2 discusses the high-frequency data and cleaning
procedures. Section 3 presents the detection method of the so-called ε-drawdowns that we use
as a proxy of transient directional price movements. Section 4 provides descriptive statistics
of the detected events. Section 5 focuses on the properties of the distributions of drawdowns
and quantify their tails as belonging essentially to a power law regime. In section 6, we
present a generalised Dragon-King test (DK-test), derived and improved from (Pisarenko and
Sornette, 2012), which allows us to quantify the statistical significance of the deviations of
extreme drawdowns from the power law distribution calibrated on the rest of the distribution.
Section 7 describes the aggregated distributions over all tickers and validates that our findings
hold both at individual and global levels. For this, we use the generalised DK-test as well
as the parametric U-test also introduced by Pisarenko and Sornette (2012) and study their
respective complementary merits. Section 8 examines the interdependence of the speed and
durations of extreme drawdowns with respect to their size. Section 9 concludes.

2. The data

We use tick data for the most actively traded Futures Contracts on the World Indices (see
Table 1) from January 1, 2005 to December 30, 2011. For Futures on the OMX Stockholm
30 Index (OMXS), our dataset starts from September 1, 2005; and for Futures on Hong Kong
indexes (HSI and HCEI), our datasets are limited to the period before April 1, 2011. For
Futures on the BOVESPA index (BOVESPA), we restrict our analysis to the period after
January 1, 2009, ignoring the relatively inactive trading in 2005–2008.

Many of the contracts presented in Table 1 are traded almost continuously (e.g. E-mini
S&P 500 futures contracts are traded every business day from Monday to Friday with only
two trading halts: from 16:15 to 17:00 CDT and from 15:15 to 15:30 CDT). Though it is being
progressively changing (Filimonov and Sornette, 2013), most of the daily volume is traded
within so-called Regular Trading Hours (RTH, in case of E-mini contracts: 8:30–15:15 CDT).
For Asian exchanges, the activity within Regular Trading Hours is also non-uniform. For the
analysis, we have limited ourselves only to the part of RTH where the trading is the most
active (in terms of volume), which we refer to as an Active Trading Hours (ATH) in Table 1.

All Futures Contracts presented of Table 1 are traded in different cycles with different
expiration date. Moreover, for each Futures at every moment, 5–6 contracts with different
maturities are traded simultaneously. Typically, for all Index Futures contracts, most of the
trading activity is going at the so-called “Front Month” contract with the nearest maturity:
in order to avoid settlement, financial investors “roll over” contracts to the next maturity
typically one week before the expiration. At the rollover, the liquidity (measured in volume)

3



Table 1: Description of the Futures Contracts used for analysis.

Region Codename Underlying index ATH / Exchange

Europe

AEX AEX (Netherlands) 09:00 – 17:30 CET / Euronext
CAC CAC40 (France) 09:00 – 17:30 CET / MONEP
DAX DAX (Germany) 09:00 – 17:30 CET / Eurex
FTSE FTSE (UK) 08:00 – 17:30 GMT / LIFFE
MIB FTSE MIB (Italy) 09:00 – 17:30 CET / MIL
IBEX IBEX (Spain) 09:00 – 17:30 CET / MEFF
STOXX Euro STOXX (Europe) 09:00 – 17:30 CET / Eurex
OMXS OMX Stockholm 30 (Sweden) 09:00 – 17:25 CET / OMX
SMI SMI (Switzerland) 09:00 – 17:25 CET / Eurex

US
ES S&P 500, E-mini (US) 08:30 – 15:15 CDT / CME
DJ Dow Jones, E-mini (US) 09:00 – 15:15 CDT / CBOT
NQ NASDAQ, E-mini (US) 08:30 – 15:15 CDT / CME

Asia

HSI Hang Seng (Hong Kong) 09:45 – 12:30 HKT / HKFE
HCEI HCEI (Hong Kong) 09:45 – 12:30 HKT / HKFE
TAMSCI TAMSCI (Taiwan) 08:45 – 13:45 SGT / SEDT
NIFTY NIFTY (India) 10:00 – 15:30 IST / NSEI
NIKKEI Nikkei 225 (Japan) 12:30 – 15:10 JST / OSA
TOPIX TOPIX (Japan) 12:30 – 15:10 JST / OSA

Australia ASX S&P/ASX 200 (Australia) 09:50 – 16:30 AEDT / SFE

South America BOVESPA BOVESPA (Brazil) 09:05 – 17:15 BRT / SPCFE

of the contract that is going to expire is switched to the contract that will expire at the
following quarter.

In order to construct a continuous time series from Futures Contracts with different ma-
turities, we have “rolled” the previous contract to the next one on the second Thursdays of
the expiration months. This approach is different from the traditional one “rolling” the Front
Month contract at expiration date. For any given date, our approach amounts to selecting the
contract with the largest daily volume. Note, however, that this “rolling” procedure, being
well-suited for Futures contracts on financial indices, does not apply directly to other futures
contracts such as commodity futures, where the physical delivery plays an important role (see
for instance Masteika et al. (2012) for a discussion of various methods of “rolling” procedures).
Figure 1 presents the dynamics of daily closing prices of the analyzed Front Month contracts
together with their intraday volatility estimated using Garman and Klass (1980)’s method.

Before our analysis, we have cleaned the high-frequency data according to standard rules
described in (Falkenberry, 2002; Brownlees and Gallo, 2006; Barndorff-Nielsen et al., 2009).
Namely, we have (i) ignored all trades and quotes outside active trading hours (see Table 2);
(ii) ignored all recordings with transaction price, bid or ask equal to zero; (iii) deleted all
quotes entries for which bid-ask spread is negative; (iv) deleted entries with the spread larger
than 20 times the median spread of the day; (v) delete entries with corrected trades; (vi)
deleted entries with prices above ‘ask’ plus the bid-ask spread and entries with prices below
‘bid’ minus bid-ask spread. Moreover, we ignored all trading days with gaps in data (due to
issues on recording or low trading activity) longer than 5 minutes.
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Figure 1: For each analyzed contract (Table 1), daily closing price (upper panel, black lines, right scale) and
intraday volatility (upper panel, blue lines, left scale) are presented. Green up triangles and red down triangles
denote respectively the 5 largest drawups and the 5 largest drawdowns for ∆t = 30 sec and ε0 = 1 (see
Section 3). The lower panel of each asset presents the number of “largest” drawdowns per month (drawdowns
with normalized size larger than x̂m, see Section 5 and Table 3).

3. Detection of drawdowns

Traditional measure of drawdowns (drawups) as sums of consecutive negative (positive)
returns is very rigid and sensitive to noise: even tiny deviation of the price in the opposite
direction will break large drawdowns into parts. Consider as an example a total peak-to-valley
drop of 40% of total duration of 10 days, with daily returns

{+0.8%,−5%.− 3%,−10%,−2%,+0.01%,−8%,−13%,−3%,−4%,−2.01%,+1.2%} . (1)
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The second return −5% following the first positive return +0.8% determines the start of a
drawdown. The last return +1.2% determines the end of the last drawdown. In the standard
definition, this series is characterised by two drawdowns of−20%, characterised by the followed
return series,

{+0.8%,−5%.− 3%,−10%,−2%,+0.01%},
{+0.01%,−8%,−13%,−3%,−4%,−2.01%,+1.2%} , (2)

where we include the two positive returns at the boundaries to make clear the start and end
of the drawdowns. Does this makes sense? Following Johansen and Sornette (2010), we argue
that investors gauging the market dynamics will be financially and psychology hurt by the
total loss of −40%, and will be insensitive to the tiny positive return +0.01% that technically
defines two separate drawdowns. As a risk measure, it is intuitive that the event to register is
the total loss of −40%. This motivates the introduction of robust measures of drawdowns and
we use the so-called epsilon-drawdown (ε-drawdown) measure introduced by Johansen and
Sornette (2010). An ε-drawdown is defined as a standard drawdown, except for the fact that
positive returns smaller than some defined threshold controlled by the parameter ε > 0 are
considered as “noise” and do not end a drawdown run. Only when a positive return occurs,
which is larger than the threshold, is the drawdown deemed to end. In the above example,
taking a threshold of, say, 0.5% leads to characterise the series (1) as a single ε-drawdown of
amplitude −40%, which is a faithful embodiment of the realised losses of investors. The two
pure drawdowns of 20%, when analysed statistically for instance via the distribution of their
sizes that loses all information about their closeness, paint a much milder picture of the true
loss. In practice, ε can be either a pre-defined constant or time-dependent. The second option
is preferable to account for the clustering and memory effects of the volatility (Cont, 2001).
For large-scale analyses and in order to compare different market regimes, the dynamics of
volatility should be taken into account for the choice of ε. The most transparent way is to
choose ε = ε0σ, where σ is a measure of the realized volatility estimated over a preceding
time period as discussed later and ε0 is a constant. This time-adaptive choice for ε allows for
a scaling of the tolerance in the definition of ε-drawdown that takes into account the recent
level of “noise”. For ε = 0, one recovers the classical definition of a drawdown (respectively,
drawup) as a sequence of consecutive strictly negative (respectively, positive) returns.

Technically, we define the sequence of drawups and drawdowns as follows. Consider the
total time interval [t1, t2]. We first discretize it in N = [(t2 − t1)/∆t] periods of length ∆t,
where the square brackets denote the floor function. This allows us to construct the discrete
returns at time scale ∆t from the log-price series p(t) = logP (t) as

rk = logP (t1 + k∆t)− logP (t1 + (k − 1)∆t), k = 1, 2, . . . , N . (3)

The time k = k0 = 1 is defined as a beginning of a drawup if r1 > 0 and a drawdown if r1 < 0.
Then, for each k > k0, we calculate the cumulative sum

pk0,k =
k∑

i=k0

ri (4)
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and test the largest deviation δk0,k of the price trajectory from a previous extremum:

δk0,k =

pk0,k − min
k0≤i≤k

pk0,i for drawdowns,

max
k0≤i≤k

pk0,i − pk0,k for drawups.
(5)

We stop the procedure when δk0,k becomes larger than ε:

δk0,k > ε = ε0σ, (6)

where σ is a measure of the volatility in the recent past and ε0 is a constant.
For a drawdown, the lowest price k1 = arg mink0≤i≤k pk0,i is defined as its end and k + 1

is defined as starting the following drawup. Respectively, for a drawup, the highest price
k1 = arg maxk0≤i≤k pk0,i is defined as its end and k + 1 as the beginning of the following
drawdown. The procedure restarts from the time k1, from which we compute the cumulative
sum pk1,k and the maximum deviation δk1,k, looking for the next value of k that will satisfy
δk1,k > ε. Then, the next extreme value of δk1,k within [k1, k] provides us k2, and so on.

k0 k1 k2 k3 k < N
Time (k)

L
og

-p
ri

ce
(p
k
)

δk3,k

Figure 2: Illustration to the definition of ε-drawups and ε-drawdowns.

Figure 2 illustrates the procedure described above and the fact that drawdowns are always
followed by drawups and vice versa, by definition. Drawdowns always start and end with
negative returns, and correspondingly drawups always start and end with positive returns. It
is important to notice that, similarly to other measures of trends, neither strict drawdowns
nor ε-drawdowns are causal, in the sense that at time k it is impossible to say if the current
drawdown (or drawup) is over or not. The classical definition (ε = 0) requires one-step look-
ahead in order to conclude about the existence of the change of the trend and the end of the
drawdown. The required look-ahead for ε-drawdowns increases with ε, and also exhibits some
time variability through the realized volatility at the time of observation.

For the present analysis, we aggregate tick-by-tick data within each day into 30-seconds
bars (∆t = 30 sec). The chosen size of ∆t results from a tradeoff. On the one hand, ∆t
should be long enough to reduce the microstructure noise (e.g. resulting from the bid-ask
bounce) and to capture only systemic events while being insensitive to price drops and jumps
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due to “fat-finger trades” or the transient sparsity of the order book. On the another hand,
∆t should not be too large so as to miss fast events that may happen on small time scales.
For example, during one of the most dramatic intraday price fluctuations — the so-called
“flash crash” of May 6, 2010, that started on E-mini S&P 500 futures contracts (CFTC and
SEC, 2010), and then almost instantly propagated to constituting stocks — the price of E-
mini Futures plunged by 5.7% in 4 minutes and then recovered back by 4% over the next 3
minutes. For instance, taking ∆t = 15 minutes would prevent us from detecting any anomaly
and would make use blind to this fast drawdown followed by an equally fast drawup. As this
flash crash is associated with the largest intraday swing of the Dow Jones index (998.5 points
or approximately 9% in 5 minutes), we must select parameters that ensure a suitable capture
of the most salient developments of financial markets.

In addition to ∆t, the definition of ε-drawdowns requires the specification of ε defined by
expression (6) in terms of the recent volatility σ. Traditionally, the realized volatility at time
t in a running window of size τ is estimated as the standard deviation of the returns in the
interval [t−τ, t). For an intraday estimation in a time interval [t1, t2], this estimation cannot be
directly applied due to the impact of the trading day opening, which is characterised by a very
large transient volatility. This leads to either truncate the window at its beginning in order
to avoid or minimise the influence of the opening period, which results in a smaller number of
samples and thus higher variance of the initial estimates, or to include the overnight trading
period prior to t1, which amounts to mixing different regimes in one estimate. In order to be
consistent within the trading day, for the σ in expression (6), we use the volatility calculated
on returns of the previous trading day. Specifically, σ is defined as the standard deviation of
the log-returns rk defined by equation (3):

σ2 =
1

N

N∑
k=0

r2
k =

1

N

N∑
k=0

(
logP (t1 + k∆t)− logP (t1 + (k − 1)∆t)

)2
, (7)

where N = [(t2 − t1)/∆t]. Note that expression (7) is slightly different from the traditional
definition of volatility σ∆t, which is normalized by the time scale ∆t: σ∆t = σ/

√
∆t.

The intraday volatility is subjected to the so-called “signature plot” effect (Andersen et al.,
2000; Bacry et al., 2013; Saichev and Sornette, 2014): the volatility σ∆t is a decreasing function
of ∆t. Moreover, in the presence of the bid-ask bounce, decreasing ∆t tends to increase the
negative autocorrelation of returns at the first lag. The choice of the parameter ε0 should
thus be adapted to the time-scale ∆t. For example, for ∆t of the order of few seconds, when
most of the volatility σ can be attributed to the bid-ask bounce, ε0 should be taken larger
than for ∆t of the orders of minutes, in order to achieve the same level of aggregation. On
the other hand, ε0 regulates the minimum (and also typical) size of the detected drawdowns,
and plays a role of an effective “scaling parameter”.

For the analysis presented below, we have selected ∆t = 30 seconds and ε0 = 1. We have
tested that our results are robust with respect to other values of these parameters to within
at least a factor 2.

4. Descriptive statistics of intraday drawdowns

We characterize drawdowns (drawups) by the following properties:
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• duration: τ = (kend − kstart)∆t, where kstart and kend are time index of the beginning
and end of a drawdown (drawup). Since we work with discrete times, durations are
always multiple of ∆t;

• size: ∆P = |P (t1 + kend∆t)− P (t1 + kstart∆t)| (this is a multiple of a tick size);

• return: r = | logP (t1 + kend∆t)− logP (t1 + kstart∆t)|;

• normalized return: rnorm = r/σ, where σ is the volatility (7) of the previous trading
day;

• speed : v = r/τ ;

• normalized speed : vnorm = rnorm/τ = v/σ.

Over the 7 years of the period 2005–2011, all the studied markets have passed through different
regimes (see Figure 1): low-volatile period of 2005–2007, increase of uncertainty in 2008 and
volatility burst during the peak of the sub-prime crisis in October 2008. After the relaxation
to the pre-crisis level by the second half of 2009–early 2010, the volatility spiked again in the
mid-2010 and second half of 2010 due to the Eurozone debt crisis. For example, for E-mini
S&P 500 Futures Contracts, the highest intraday volatility over the whole period (0.083 on
October 10, 2008) is almost 50 times larger than the lowest (0.0015 on February 15, 2007).
Thus, normalizing drawdowns by the instantaneous volatility is essential to obtain meaningful
results aggregated over such a long period and especially across multiple assets.

Table 2 presents descriptive statistics of durations, sizes, normalized returns and speeds of
drawups and drawdowns detected for ∆t = 30 sec and ε0 = 1 on the entire interval of 2005–
2011 for different contracts (for BOVESPA, we considered the period 2009–2011). Changes
in ∆t and ε0 modify the descriptive statistics as follows. Increasing ∆t or ε0 decreases pro-
portionally the number of drawdowns and drawups, and magnifies their durations τ together
with their sizes ∆P and their normalized returns rnorm. For instance, for ∆t = 2 min and
ε0 = 2, the typical duration τ is roughly 14–15 times larger than for ∆t = 30 sec and ε0 = 0.5.
While changes of ∆P are proportional to changes in ∆t and ε0, the normalized returns rnorm

only gradually increase with ∆t and, at the same time, are much more sensitive to ε0. In-
terestingly, the normalized speed vnorm is almost insensitive to changes in ε0, but decreases
with increase of ∆t (i.e. larger drawdowns are typically slower than shorter drawdowns). This
decrease is almost proportional for most of the distribution of normalized speeds, except in its
tail where a different scaling holds. Such non-trivial scaling can be interpreted as due to the
multifractal properties of the price dynamics (Arneodo et al., 1998; Calvet and Fisher, 2002;
Borland et al., 2005) resulting from the interplay between long-term memory in the system
together with nonlinear amplification (Filimonov and Sornette, 2011).

Table 2 shows that the statistics for drawdowns and drawups are almost identical for
each asset and for all analyzed parameters, except the statistics of extreme (maximal) values.
Typically (for developed European and US markets), extreme drawdowns are larger than
extreme drawups in terms of normalized returns rnorm, which concurs with the empirical
evidence of gain-loss asymmetry (Cont, 2001; Jensen et al., 2003). However, for TAMSCI
(Taiwan), the extreme drawup of 5% at the opening of the market on September 10, 2009
(rnorm = 127.4) is more than twice larger than the maximum observed drawdown (rnorm =
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Table 2: Descriptive statistics of drawups and drawdowns for ∆t = 30 sec and ε0 = 1. The table summarizes
the number of detected drawdowns and drawups (“Count”), as well as the median, 90% quantile (Q90%)
and maximal value of duration (τ), size (∆P ), normalized return (rnorm) and normalized speed (vnorm) of
drawdowns and drawups.

(a) Drawdowns

Codename Count
τ , sec |∆P | |rnorm| |vnorm|

Median Q90% Max Median Q90% Max Median Q90% Max Median Q90% Max

AEX 156981 120 360 4860 0.25 0.75 8.75 2.49 6.48 68.72 0.024 0.060 1.079
CAC 159096 120 360 6450 3.00 9.00 123.00 2.53 6.37 215.00 0.024 0.059 0.896
DAX 161094 120 360 3030 4.50 13.00 141.00 2.49 6.19 119.51 0.023 0.058 0.932
FTSE 181065 120 360 3150 3.50 10.50 138.00 2.51 6.23 176.47 0.024 0.057 1.164
MIB 151537 120 360 4800 20.00 55.00 700.00 2.45 6.15 88.45 0.024 0.059 0.666
IBEX 157868 120 360 3720 9.00 25.00 580.00 2.47 6.11 147.75 0.024 0.059 0.876
STOXX 194997 90 300 4170 2.00 6.00 80.00 2.10 5.12 78.21 0.026 0.056 0.769
OMXS 115381 120 390 5100 0.75 2.25 20.75 2.44 6.17 52.25 0.024 0.061 0.610
SMI 155845 120 360 6480 4.00 12.00 143.00 2.46 6.32 121.38 0.024 0.059 1.349
ES 135324 120 330 5670 1.00 2.50 59.50 2.40 5.63 132.62 0.024 0.057 0.553
DJ 121924 120 330 2370 7.00 20.00 551.00 2.47 5.97 165.05 0.024 0.058 0.688
NQ 134759 120 330 2700 1.50 4.50 120.00 2.42 5.97 149.19 0.024 0.057 0.498
HSI 47294 120 330 3000 18.00 56.00 581.00 2.55 6.08 62.51 0.024 0.055 0.468
HCEI 46411 120 330 2250 14.00 45.00 629.00 2.50 6.27 44.34 0.024 0.056 0.343
TAMSCI 100446 90 330 4770 0.30 0.70 6.70 2.27 5.69 41.45 0.024 0.055 0.740
NIFTY 99165 120 330 2250 4.31 12.50 199.00 2.63 6.62 67.75 0.025 0.056 0.665
NIKKEI 72177 60 240 1770 10.00 20.00 290.00 1.70 3.68 27.77 0.029 0.059 0.457
TOPIX 65737 90 270 2010 0.50 2.00 35.50 1.66 4.67 30.90 0.027 0.053 0.263
ASX 119717 120 390 2700 3.00 9.00 75.00 2.51 6.27 36.88 0.024 0.057 0.420
BOVESPA 58885 120 360 3180 60.00 160.00 1600.00 2.52 6.21 50.42 0.023 0.057 0.746

(b) Drawups

Codename Count
τ , sec ∆P rnorm vnorm

Median Q90% Max Median Q90% Max Median Q90% Max Median Q90% Max

AEX 157018 120 390 4200 0.25 0.750 15.25 2.50 6.48 48.72 0.024 0.060 0.830
CAC 159127 120 360 3750 3.00 9.000 179.50 2.54 6.37 157.99 0.024 0.058 0.699
DAX 161102 120 360 3390 4.50 13.000 265.50 2.51 6.24 52.53 0.023 0.057 1.004
FTSE 181136 120 360 4590 3.50 10.500 219.50 2.51 6.23 79.00 0.024 0.056 2.634
MIB 151527 120 390 4680 20.00 55.000 810.00 2.45 6.11 50.36 0.023 0.058 0.789
IBEX 157985 120 360 3660 9.00 25.000 646.00 2.47 6.12 52.00 0.024 0.058 0.657
STOXX 195052 90 300 4980 2.00 6.000 131.00 2.11 5.13 59.66 0.026 0.055 0.698
OMXS 115430 120 390 4620 0.75 2.250 39.00 2.45 6.12 43.86 0.024 0.061 0.631
SMI 155897 120 390 4050 4.00 12.000 293.00 2.47 6.31 59.09 0.024 0.058 0.842
ES 135359 120 330 3060 1.00 2.500 41.25 2.41 5.64 83.32 0.024 0.057 1.187
DJ 121968 120 330 2880 7.00 20.000 264.00 2.49 5.99 72.97 0.024 0.057 1.518
NQ 134784 120 330 3270 1.50 4.500 76.50 2.44 5.97 96.25 0.024 0.057 0.803
HSI 47410 120 330 2760 18.00 56.000 409.00 2.56 6.09 46.75 0.024 0.054 0.456
HCEI 46497 120 360 2220 14.00 44.000 402.00 2.51 6.23 44.19 0.024 0.056 0.366
TAMSCI 100481 90 330 5640 0.30 0.700 14.80 2.27 5.65 127.45 0.024 0.055 0.555
NIFTY 99148 120 330 1890 4.40 12.365 204.65 2.70 6.56 48.82 0.025 0.055 0.680
NIKKEI 72199 60 240 1890 10.00 20.000 270.00 1.70 3.64 31.15 0.029 0.059 0.557
TOPIX 65815 90 270 2010 0.50 2.000 23.00 1.68 4.63 35.19 0.027 0.053 0.321
ASX 119818 120 390 5880 3.00 9.000 109.00 2.52 6.20 44.05 0.024 0.056 0.351
BOVESPA 58900 120 360 2730 60.00 160.000 1600.00 2.54 6.17 51.96 0.023 0.057 0.626

57.7). For NIKKEI, TOPIX (Japan) and BOVESPA (Brazil), the largest drawup is only
slightly larger than the most extreme drawdown.

We observe that both median and 90%-quantiles (as well as mean not reported in the
table) of the durations τ of drawdowns and drawups are almost equal to each other for all
Futures contracts, except NIKKEI and TOPIX. Though the price of contracts vary in a wide
range and so does the sizes ∆P of drawdowns, the statistics (mean, median and quantiles) of
normalized returns rnorm are very similar across contracts. At the same time, maximal values
of the normalized returns differ by a large factor: the smallest extreme value (rnorm = 44.3
for HCEI) is 4.8 times smaller than the largest one (rnorm = 215.0 for CAC). Finally, mean
and quantile statistics for normalized speeds vnorm agree almost perfectly across all contracts.
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We also note the exceptional properties of Japanese markets (contracts NIKKEI and
TOPIX), which exhibit the shortest (minimal values of τ) and the smallest (minimal values of
rnorm) drawdowns and drawups among all analyzed contracts. Moreover, while the normalized
speed vnorm of drawdowns and drawups are typically close to each other across different
contracts, the normalized speed of the fastest drawdown on TOPIX Futures Contracts is at
least twice smaller than that of any other analyzed contract.

5. Distribution of normalized size of drawdowns

Figure 3 shows the complementary cumulative distribution functions (ccdf) of the normal-
ized returns rnorm of the drawdowns and drawups defined at the top of the previous section
4, for ∆t = 30 sec and ε0 = 1, together with the distributions of negative and positive price
log-returns for the value ∆t = 30. Together with the empirical distributions, we present the
distributions of returns of drawdowns for the null model constructed by reshuffling log-returns
within the active trading hours of each trading day independently. This reshuffling destroys
all temporal correlations while keeping unchanged the marginal distributions of log-returns
as well as the secular dynamics of the intraday volatility (see Figure 1).

One can observe in Figure 3 that the tails of the distributions of drawdowns and drawups
deviate from those obtained for the null model. While the drawdowns in the null model
follow approximately a Weibull distribution with shape parameter estimated around 0.9, the
real data is much better characterised by a fatter power law tail. This is evidence that time
dependence between returns play an important role in the directional price movements and
especially in the occurrence of large drawdowns and drawups. Interestingly, for some of the
analyzed contracts (CAC, FTSE, ES and DJ), one can observe significant deviations in the
null model distribution that are associated with a few extreme events. They correspond to
drawdowns whose size is essentially controlled by a single return of enormous magnitude:
as seen from Figure 3, the sizes of these drawdowns are identical to the sizes of the return
outliers.

In order to quantify the power law approximation of the tails,

F (x) = Pr [rnorm > x] =
(xm
x

)α
, x ≥ xm (8)

we have employed the framework proposed in (Clauset et al., 2009). Assuming a known value
of xm, the (Hill) maximum likelihood estimator (MLE) yields the well-known closed form
expression for the exponent α̂:

α̂ = N ·

[
N∑
i=1

ln
xi
xm

]−1

, (9)

where N is the number of observations in the tail (i.e. such that xi ≥ xm). The standard error
on α̂ is derived from the width of the likelihood maximum (Sornette et al., 1996; Newman,
2005; Clauset et al., 2009):

σα̂ '
α̂√
N

(10)

Following Clauset et al. (2009), we have scanned different values of xm, fitting the distribu-
tion (8) and calculating the Kolmogorov-Smirnov distance (DeGroot and Schervish, 2011)
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Figure 3: Complementary cumulative distribution function (ccdf) for the normalized returns of drawdowns
(red down triangles) and drawups (green up triangles) for ∆t = 30 sec and ε0 = 1. Blue and magenta lines
depict the distributions of drawdowns and drawups of the null model constructed by reshuffled returns. Black
straight lines correspond to power law fits of the tails of the distributions of drawdowns (see Table 3). Red and
green dots lines show the distributions of normalized returns at ∆t = 30 sec. Dashed black lines correspond
to power law fits of the tails of these distributions of returns (see Table 3).

between the cumulative distribution function (cdf) of the data and fitted model:

D = max
x≥xm

|S(x)− F (x)|, (11)

where S(x) is the empirical cdf for the observed data and F (x) is given by (8). As an
alternative test, we have used the Anderson-Darling distance (DeGroot and Schervish, 2011),
which is more sensitive to the deviations in the tails of the distributions

A2 = N

∫ ∞
xm

(S(x)− F (x))2

F (x)(1− F (x))
dF (x) = −N −

N∑
i=1

2i− 1

N

[
lnF (xi) + ln(1−F (xN+1−i))

]
, (12)

where the input data is assumed to be ordered (xm ≤ x1 < x2 < · · · < xN ). We then used the
value of x̂m that minimizes D (or A2) as an estimate of the lower bound xm. An illustration
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of the power law fits of the tails of the distributions of drawups and drawdowns is presented
in Figure 3.

Table 3 summarises the results obtained by fitting the power law distribution (8) to
the empirical ccdf of the normalized returns (rnorm) of drawdowns and drawups using the
Kolmogorov-Smirnov distance (11) for the lower bound detection. The Anderson-Darling dis-
tance (12) provides values similar to those reported in Table 3 except for the contracts ES,
NQ, HCEI, NIKKEI, TOPIX and BOVESPA for which the more conservative A2 distance
cuts off too much of the data by estimating a lower bound x̂m & 20. The resulting dataset
contains less than 100 points, which prevents a robust estimation. This behavior resulting
from the use of the A2 distance was previously discussed in Clauset et al. (2009). Let us
mention that alternative methods have recently been introduced that improve on or comple-
ment the maximum likelihood (Hill) estimation of exponent α together with the selection of
the lower bound xm using the Kolmogorov-Smirnov or Anderson-Darling distances. These
methods include (Carpentier and Kim, 2013; Deluca and Corral, 2013; Wager, 2014)), each
of which present advantages over the Hill estimator but have also their own limitations.

Table 3 summarizes the values of the lower boundary x̂m and exponent α̂ of the power
law fits of the distributions of the normalized returns (rnorm) for drawdowns and drawups for
∆t = 30 sec and ε0 = 1. Our tests show that, when increasing both ∆t and ε0, the exponent
α̂ slightly increases. However, overall, the exponent estimates are consistent for all values of
∆t and ε0 and coincide with a relatively good precision between drawups and drawdowns.

Figure 4 shows that the distributions of both drawups and drawdowns have lighter tails
than the distribution of returns. On average, the exponent α̂du of the power law tail of the
distribution of drawups is larger than the corresponding exponent α̂pos for positive returns
by 0.43. Similarly, the exponent α̂dd of the power law tail of the distribution of drawdowns is
larger than corresponding exponent α̂neg for negative returns by 0.29. Overall, the estimated
exponents for drawups and drawdowns have values in the interval 4 < α̂ < 5 and for log-
returns in the interval 3.5 < α̂ < 4.5.

D
ra

w
up

s

D
ra

w
do

w
ns

Po
si

tiv
e

N
eg

at
iv

e

4.0

4.5

5.0

5.5

6.0

α̂

A
E

X
C

A
C

D
A

X
FT

S
E

M
IB

IB
E

X
S

TO
X

X
O

M
X

S
S

M
I

E
S D
J

N
Q

H
S

I
H

C
E

I
TA

M
S

C
I

N
IF

TY
N

IK
K

E
I

TO
P

IX
A

S
X

B
O

V
E

S
PA

Drawdowns and negative returns

A
E

X
C

A
C

D
A

X
FT

S
E

M
IB

IB
E

X
S

TO
X

X
O

M
X

S
S

M
I

E
S D
J

N
Q

H
S

I
H

C
E

I
TA

M
S

C
I

N
IF

TY
N

IK
K

E
I

TO
P

IX
A

S
X

B
O

V
E

S
PA

Drawups and positive returns

Figure 4: Box plot of estimated exponents α̂ (Table 3); and exponents for drawdowns (red down triangles),
drawups (green up triangles), positive (black squares) and negative (black circles) returns for individual con-
tracts.

These results on the exponents presented in figure 4 are paradoxical, since drawdowns
cannot, by construction, be smaller than single period returns, as seen from Figure 3 in which
one can observe that the distribution of returns exhibits a first-order stochastic dominance
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Table 3: Estimates of the lower boundary x̂m and of the exponent α̂ of the power law fits (8) of the distributions
of normalized returns rnorm of the drawdown and drawup for ∆t = 30 sec and ε0 = 1 and of the normalized
positive and negative price log-returns for ∆t = 30 sec. The exponents α̂ are presented together with the
estimation of its standard error (10); the number of observations in the power law tail (Nx≥x̂m) is also reported.

(a) Drawdowns and negative returns

Codename
Drawdowns Negative returns

x̂m α̂ Nx≥x̂m x̂m α̂ Nx≥x̂m

AEX 14.83 4.25 ± 0.13 1068 3.72 4.18 ± 0.05 6342
CAC 14.38 4.34 ± 0.13 1076 3.06 3.90 ± 0.03 14311
DAX 13.32 4.00 ± 0.10 1481 3.45 3.53 ± 0.03 10226
FTSE 15.38 4.56 ± 0.17 752 3.23 4.33 ± 0.04 11505
MIB 18.43 4.71 ± 0.26 337 3.49 4.16 ± 0.05 6844
IBEX 12.70 4.51 ± 0.12 1493 3.68 4.20 ± 0.05 6138
STOXX 11.60 4.34 ± 0.12 1326 3.09 4.19 ± 0.04 9590
OMXS 14.71 5.00 ± 0.20 655 3.78 4.47 ± 0.09 2724
SMI 16.25 4.71 ± 0.19 605 4.12 4.48 ± 0.08 3386
ES 11.73 4.85 ± 0.15 1041 2.56 4.24 ± 0.03 17897
DJ 12.40 4.19 ± 0.13 1042 3.86 4.23 ± 0.07 4127
NQ 16.18 5.01 ± 0.27 358 3.76 4.36 ± 0.06 4633
HSI 11.07 4.03 ± 0.16 662 2.89 4.00 ± 0.06 4561
HCEI 18.18 5.54 ± 0.56 99 3.40 4.80 ± 0.10 2332
TAMSCI 14.27 4.50 ± 0.19 591 2.37 3.72 ± 0.03 15115
NIFTY 15.85 4.88 ± 0.23 456 3.84 4.21 ± 0.07 3850
NIKKEI 5.56 4.18 ± 0.10 1841 5.14 5.00 ± 0.59 71
TOPIX 11.67 4.81 ± 0.27 321 3.69 5.93 ± 0.18 1125
ASX 12.42 5.67 ± 0.18 972 5.17 5.62 ± 0.25 490
BOVESPA 15.92 5.37 ± 0.36 221 2.69 4.01 ± 0.05 6758

(b) Drawups and positive returns

Codename
Drawups Positive returns

x̂m α̂ Nx≥x̂m x̂m α̂ Nx≥x̂m

AEX 16.74 5.10 ± 0.23 486 3.37 4.27 ± 0.05 8065
CAC 14.05 4.82 ± 0.16 950 3.17 4.09 ± 0.04 11218
DAX 13.50 4.77 ± 0.15 1059 3.37 3.89 ± 0.04 9585
FTSE 12.58 4.99 ± 0.13 1481 3.05 4.40 ± 0.04 12992
MIB 13.70 5.04 ± 0.17 876 3.18 4.42 ± 0.05 8339
IBEX 12.56 4.96 ± 0.13 1363 3.47 4.34 ± 0.05 6814
STOXX 10.61 4.74 ± 0.12 1584 2.56 4.21 ± 0.03 18461
OMXS 12.86 4.82 ± 0.15 1013 3.00 4.51 ± 0.06 6721
SMI 11.54 4.72 ± 0.10 2073 3.42 4.60 ± 0.06 6587
ES 10.41 4.75 ± 0.12 1525 2.54 4.33 ± 0.03 18327
DJ 11.16 4.52 ± 0.12 1431 3.73 4.46 ± 0.07 4368
NQ 14.63 5.55 ± 0.25 487 3.07 4.35 ± 0.04 10172
HSI 13.91 4.48 ± 0.28 259 3.08 4.13 ± 0.07 3456
HCEI 15.14 5.43 ± 0.39 191 3.39 4.65 ± 0.10 2279
TAMSCI 14.31 4.61 ± 0.22 457 2.95 4.02 ± 0.05 6551
NIFTY 11.41 4.61 ± 0.12 1406 3.55 4.47 ± 0.07 3891
NIKKEI 5.88 4.49 ± 0.12 1425 3.91 5.42 ± 0.31 313
TOPIX 13.36 5.22 ± 0.39 180 3.63 5.65 ± 0.17 1051
ASX 11.94 5.45 ± 0.17 1029 2.82 4.98 ± 0.05 9786
BOVESPA 12.62 4.93 ± 0.23 460 2.78 4.17 ± 0.06 5669

with respect to the distribution of drawdowns. As a consequence, the distribution of draw-
downs should embody better the extreme loss occurrences. Taking at face value that the tail
exponents of return distributions are smaller than the tail exponents of drawdown distribu-
tions, as documented in Table 3, would imply that their extrapolations will intersect at some
point. This would imply that there can be such values of losses that are reached with higher
probability in a single step rather than in a sequence of steps constituting drawdown (and sim-
ilarly for drawups), which is impossible logically. A first comment is that this mathematical
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paradox can never be reached in real life, as this “intersection” would occur at unrealistically
large values of x ∼ 106 (i.e. for returns that are ∼ 106 times larger than the volatility of the
previous trading day). There is an additional argument to resolve this paradox, which is that
extrapolating the power law tails assumes that they hold and would hold firmly further for
larger events. But already in our data, we observe significant deviations from the power law
tails for the most extreme events, as shown in figure 3, so that a power law approximation
becomes highly questionable.

The fact that the distributions of individual returns r
(∆t)
t have fatter tails than the dis-

tribution of normalized returns rnorm for drawdowns made of these returns is a signature of
the temporal correlation structure between returns. Moreover, it suggests that drawdowns in
the tail of their marginal distribution do not result from the largest individual returns but
are constructed from a sequence of smaller returns that aggregate transiently either due to
external or internal market forces.
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Figure 5: For each analyzed contract, fraction of drawdowns (left) and drawups (right) belonging to the power
law tail of their marginal distributions that contain N = 0, 1, 2, 3, 4, 5 or 6 ≤ N ≤ 10 (color-coded) large
returns.

To test this hypothesis, we calculated the number N of large log-returns (in the power law
tail) in each drawdown belonging to the power law tail of its normalized return rnorm larger
than the corresponding x̂m given in Table 3. For all analyzed drawdowns and drawups, we
found that the maximal value of N is 10. Then, for each N = 0, 1, . . . , 10, we calculated the
number of drawdowns (drawups) that contained N large log-returns. Figure 5 shows that the
majority of drawdowns and drawups (more than 50%) do not contain any log-returns from
the tail of the distribution (N = 0). In particular, the large drawdowns and drawups for
NIKKEI and ASX are constructed only from the returns that are smaller than x̂m, i.e. from
the body of the distributions.

Moreover, when they are present, the contribution of these large log-returns to the size of
the drawdowns (drawups) is not special. In order to illustrate this, for each analyzed contract
and each large drawdown/drawup that contain at least one large log-return (i.e. N ≥ 1), we
have calculated the relative contribution C of the total sum of the large individual normalized

log-returns
∑
r

(∆t)
t to the total normalized return rnorm of the event (C =

∑
r

(∆t)
t /rnorm),

which are shown in Figure 6 for the E-mini S&P 500 Futures Contract (codename ES). Other
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Figure 6: Histogram of the relative contribution (C) of large individual log-returns (from the tail of distribution)
to the normalized return of large drawdowns (red) and drawups (green) for ES Futures Contract. Vertical line
denotes C = 1 that corresponds to the situation when the drawdown is constructed only from large individual
log-returns.

contracts give similar qualitative results. One can observe that the distribution of C is skewed
towards small values. The mean and median values of C for different contracts vary in the
range 0.35 − 0.45, indicating that, on average, large individual returns contribute no more
than 50% of the total return of a drawdown/drawup. Very rarely, one can observe C ≥ 1,
which corresponds to the situation when the whole trend is constructed only from individual
large returns, and smaller returns of negative sign only provide transient corrections (see the
discussion of the drawdown detection method in Section 3 and Figure 2).

6. Quantification of the extreme drawdowns

In the previous section, we have analyzed the tails of the distributions of normalized returns
for individual Futures Contracts, which have been found well approximated by power laws over
several orders of magnitude. However, some extreme events deviate substantially from the
power law tail approximation (see Figure 3). The important question discussed in the present
section is whether this deviation is statistically significant or not. Statistical significance here
is not a mere quantification of goodness-of-fit of distributional characteristic, but addresses the
question whether these extreme events are “outliers” in the sense of generating mechanisms.
If present, we will refer to these special events as “Dragon Kings”, the notion coined by one
of us (Sornette, 2009). To understand what the term means, we first need to explain what
are the implications of power law distributions taken as a reference point.

Recall that power law distributions embody the notion that extreme events are not ex-
ceptional events because they belong to the same distribution, which exhibits the remarkable
property of scale invariance: the ratio of the frequencies of two event sizes is proportional to
the ratio of the sizes and independent of the absolute values of the sizes. Only power laws
have this property. In this sense, extreme events are just scaled-up versions of their smaller
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siblings. This is usually interpreted as evidence of the same mechanism underlying the gen-
eration of the whole population, from small to extreme sizes. As a consequence, because
of the common mechanism, these tail events are intrinsically unpredictable because nothing
special takes place before their occurrence that could hint of some special organisation that
would put extreme events apart. In this sense, extreme events in the far right tail of power
laws have been suggested as illustrating the concept of “black swans” (Taleb, 2007). This
colourful term is actually a layman version of the concept of “unknown unknowns” introduced
by Knight in 1930 that there exists events that we could not conceive before they happen.
Therefore, strictly in the sense of Knightian uncertainty, extreme events in the far right tail
of power laws are not black swans because we can conceive of their occurrence since we can
quantify their frequencies. Only their specific occurrence time is not predictable.

In contrast, “Dragon King” events reveal the existence of mechanisms of self-organization
that are not apparent from the (power law) distribution of their smaller siblings. Dragon
Kings are often associated with a neighborhood of a phase transition, a bifurcation or a
tipping point. This distinctive feature (of the approach towards a tipping point) is crucial to
learn how to diagnose in advance the symptoms associated with a coming Dragon King (for
a more elaborated discussion, we refer to (Sornette, 2009; Sornette and Ouillon, 2012)).

There have already been a number of empirical examples of Dragon Kings documented
in the literature in natural and socio-economic systems, identified statistically as the outliers
that occur more frequently that predicted by the power law distributions calibrated on the rest
of the population: stock market crashes (Johansen and Sornette, 2001, 1998); some capitals in
the distributions of agglomeration sizes (Pisarenko and Sornette, 2012); extreme events in the
distribution of hydrodynamic turbulent velocity fluctuations, acoustic emissions associated
with material failure or epileptic seizures occurring in the strong coupling regime (Sornette,
2009). Recently, similar “runaway” phenomena, that correspond to “negative” Dragon Kings,
were documented in the distribution of citations (Golosovsky and Solomon, 2012).

In order to detect Dragon Kings in the distributions, we employ a modified version of the
DK-test (“Dragon-King test”) proposed by Pisarenko and Sornette (2012). The DK-test is
based on a statistics that allows one to test quantitatively if the largest r ≥ 1 events in the
tail of the empirical distribution belongs to the same distribution as the rest of the sample
assumed to be a power law (8). We start by transforming (8) with the following nonlinear
mapping:

y = ln
x

xm
. (13)

If x follows the Pareto distribution (8), then the random variable y is distributed according
to the exponential law:

F (y) = Pr [Y > x] = 1− exp(−αy), y ≥ 0. (14)

Given independent observations xi (and thus yi), we construct a statistical test for the fol-
lowing hypothesis:

H0: all observations of the sample are independently generated by the same ex-
ponential distribution (14).

versus its alternative:

H1: r observations with the first r ranks (y1 ≥ · · · ≥ yr−1 ≥ yr) are generated by
a different distribution.
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We consider the differences δyi = yi − yi−1 and construct the following auxiliary variables:

zi = i · δyi =

{
i · (yi − yi−1), i = 1, . . . , N − 1;

N · yN , i = N.
(15)

According to Pisarenko and Sornette (2012), the test statistics

T =
z1 + · · ·+ zr
zr+1 + · · ·+ zN

· N − r
r

(16)

is distributed according to the f -distribution with (2r, 2N − 2r) degrees of freedom. The
corresponding p-value for the hypothesis H0 is given by:

p(r; y1, . . . , yN ) = 1− F (T, 2r, 2N − 2r), (17)

where F (t, a, b) is the cumulative distribution function (cdf) of the f -distribution with (a, b)
degrees of freedom. Following Pisarenko and Sornette (2012), we will use threshold the
p0 = 0.1 for rejecting the null hypothesis (for p < 0.1) and declaring the r largest events
as “outliers”.

We note the existence of a limitation of the original DK-test of Pisarenko and Sornette
(2012), which appears when the value of the observation with the first rank (or the first few
ranks) is extremely large. In this case, this single observation will contribute heavily to the
sum in the numerator of expression (16), which will remain large even for large values of r. For
example, in synthetic samples of 100 variables distributed according to a pure exponential,
adding a single outlier with a size 2 · y1 (i.e. twice larger than the maximal observed value) is
sufficient to distort the statistic (16) and make it declare that the 10 to 20 largest observations
are“outliers”, when using the original formulation of DK-test (Pisarenko and Sornette, 2012).
The original DK-test thus does not fail to correctly identify the presence of Dragon Kings,
but it may over-estimate their numbers due to the contamination from the existence of a
super-large one.

The natural solution to this problem when testing if the r-th rank is an outlier is to remove
the r−1 largest observations from the set before calculating the DK statistics, In other words,
when testing if rank r is an outlier, we remove the r − 1 larger values and make the rank
r-varialble the new rank 1. For instance, for r = 2, we remove the largest observation r1

from the set and then test the null hypothesis versus its alternative that y2 is generated by a
different distribution than the rest of the observations (y3 ≥ y4 ≥ · · · ≥ yN ). We employ this
procedure iteratively starting with r = 1 in order to find the minimal value of r for which the
null hypothesis H0 can no more be rejected.

However, this procedure does not address the lack of power of the DK-test when several
large outliers are present, as occurs for instance in the distributions of drawdowns for the CAC
and FTSE contracts shown in Figure 3. As an illustration, consider the synthetic sample of
100 exponentially distributed variables y1, . . . , y100, with two additional introduced outliers
of sizes respectively 2 · y1 and 2.2 · y1. The application of the iterative procedure described
above fails to detect the largest outlier of size 2.2 · y1. The reason is similar to the one
mentioned before: in this case, y2 contributes substantially to the sum in the denominator of
expression (16) and the overall value of T is not large enough to reject H0. In other words, the
value 2.2 · y1 is not detected as an outlier in the presence of the value 2 · y1 together with the
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other 100 exponentially distributed variables. Removing 2.2 · y1 and applying the DK-test on
the variable 2 · y1 compared with the other remaining 100 exponentially distributed variables
y1, . . . , y100 as suggested in our iterative procedure does diagnose 2 · y1 as an outlier. This
creates a paradox, as the largest value is not an outlier but the second largest one would be.

To overcome all these issues, we propose the following modification of the original DK-test
of Pisarenko and Sornette (2012). The r largest observations y1, . . . , yr are diagnosed as being
“Dragon-Kings” or “outliers” if and only if the remaining observations yr+1, . . . , yN contains
no outliers and if each of the variable y1, . . . , yr when introduced individually in the remaining
set individually can be qualifier as an outlier using the F-test (17). In other words, we will
require that the following inequalities are simultaneously satisfied:

p1 = p(1; y1, yr+1, . . . , yN ) < p0;

p2 = p(1; y2, yr+1, . . . , yN ) < p0;

. . .

pr = p(1; yr, yr+1, . . . , yN ) < p0;

pr+1 = p(1; yr+1, yr+2, . . . , yN ) ≥ p0.

(18)

This set of conditions (18) captures the logic that, for the first r ranks to be outliers, the
distribution of the other N − r variables is an unperturbed exponential law when removing
these r outliers, and each of the r outliers should be individually diagnosed as aberrant.

Table 4 presents the results of the modified DK-test for the distribution of normalized
returns rnorm of drawdowns and drawups for different contracts. For each test (17), we have
sampled the N = 200 largest events of the distribution tail. The largest number of “Dragon-
Kings” were found in drawdowns of the CAC contract (3 events), then 2 “Dragon-Kings”
in the drawdowns of the DAX, and FTSE and in the drawups of the NQ contracts; and 1
“Dragon-King” was detected in the drawdowns of the IBEX, ES, DJ and NQ and in the
drawups of the CAC and TAMSCI contracts.

Table 4 documents that the most famous intraday price swing, the so-called “flash crash”
of May 6, 2010 (13:41:30 EST), can be diagnosed as a “Dragon King” event for all three US
E-mini futures contracts: ES, DJ and NQ. Over the time of 4 minutes (5 for NQ), the price
of these index futures contracts dropped by rnorm = 132.62, 165.04 and 149.19 respectively,
which means that the price drop was more than a 130-sigma event (i.e., 132–165 times larger
than the volatility of 30-second returns). As shown by Filimonov and Sornette (2012), the
dynamics of the high-frequency mid-quote price during this “flash-crash” exhibited a unique
pattern, indicating an extreme degree of self-excitation during that event. As reported, slightly
before and during the price drop, the system became critical, being essentially driven by the
internal feedback mechanisms rather than the external information flow.

Two consecutive drawups occurring after the “flash crash” of NQ (13:46:00 and 13:49:30
EST with rnorm = 96.24 and 80.39) can be also claimed to be “outlier” of the respective prob-
ability distribution. The “flash crash” started on E-mini S&P 500 futures contracts (CFTC
and SEC, 2010), and then almost instantly propagated to the constituting stocks of the index
as a result of the arbitrage between ETF and Futures and between ETF and the underlying
assets (Ben-David et al., 2011). The “Flash crash” of May 6, 2010 was attributed to the activ-
ity of high-frequency traders according to the joint SEC and CFTC report (CFTC and SEC,
2010). These high-frequency traders did not trigger the crash but contributed significantly to
the market volatility and extraordinarily amplified the initial price drop.
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Table 4: Characteristics of the extreme drawdowns and drawups for ∆t = 30 sec and ε0 = 1. For each analyzed
contract, we report the number of detected “Dragon-Kings” (r), the timestamp of the beginning of the extreme
events (in local time for each Contract — see Table 1), their duration τ in seconds, their size ∆P in monetary
units and the normalized return rnorm as well as normalized speed vnorm. Rdur and Rvel denote the rank of
the events’ duration and normalized speed. The table also presents the p-values given by expression (18) for
the modified DK-test for the individual events (pk) and for the remaining observations (pr+1). The boldface
font indicates p-values for which the null hypothesis H0 (18) can be rejected.

(a) Drawdowns

Codename r Timestamp |∆P | |rnorm| τ , sec |vnorm| Rdur Rvel pk pr+1

AEX 0 2005-04-01 17:13:30 3.45 68.71 930 0.07 1289.0 8484 0.70 0.70
CAC 3 2010-12-27 09:03:00 123.00 214.99 240 0.90 34381.5 1 0.00 0.66

2005-07-07 11:14:00 76.00 109.91 420 0.26 11807.0 74 0.04 0.66
2005-07-07 11:24:00 61.50 89.73 180 0.50 51185.0 10 0.09 0.66

DAX 2 2010-12-27 09:02:30 107.00 119.51 480 0.25 7728.0 118 0.03 0.73
2005-07-07 11:14:00 86.50 112.25 390 0.29 13186.5 59 0.04 0.73

FTSE 2 2005-07-07 10:14:00 113.50 176.46 270 0.65 30586.0 2 0.00 0.96
2005-07-07 09:52:30 63.50 97.73 720 0.14 2250.5 796 0.06 0.96

MIB 0 2005-07-07 11:14:30 415.00 88.45 420 0.21 11749.0 117 0.12 0.93
IBEX 1 2005-07-07 11:14:00 206.00 147.75 390 0.38 13699.5 12 0.03 0.47
STOXX 0 2005-07-07 11:14:00 57.00 78.21 420 0.19 9811.0 160 0.25 0.32
OMXS 0 2010-06-04 14:30:00 16.00 52.25 270 0.19 22339.0 143 0.85 0.36
SMI 0 2005-07-07 11:25:30 99.00 121.38 90 1.35 92221.0 1 0.24 0.15
ES 1 2010-05-06 13:41:30 59.50 132.62 240 0.55 25661.0 1 0.02 0.39
DJ 1 2010-05-06 13:41:30 551.00 165.04 240 0.69 23262.0 1 0.03 0.85
NQ 1 2010-05-06 13:41:30 120.00 149.19 300 0.50 17303.0 1 0.01 0.54
HSI 0 2006-03-07 10:00:30 250.00 62.50 210 0.30 11541.0 4 0.22 0.84
HCEI 0 2011-03-15 10:16:30 211.00 44.33 270 0.16 7525.5 65 0.93 0.31
TAMSCI 0 2009-09-10 08:53:00 4.90 41.45 210 0.20 22527.5 82 0.95 0.61
NIFTY 0 2011-06-20 10:09:30 96.10 67.75 210 0.32 24678.0 12 0.16 0.79
NIKKEI 0 2011-03-15 12:38:30 240.00 27.77 330 0.08 3933.5 1561 0.53 0.98
TOPIX 0 2007-07-12 14:15:30 10.50 30.89 480 0.06 1652.0 3252 0.97 0.90
ASX 0 2009-11-27 10:15:30 41.00 36.87 690 0.05 2583.5 13558 0.87 0.34
BOVESPA 0 2011-04-18 10:01:00 1310.00 50.41 150 0.34 23672.5 15 0.24 0.84

(b) Drawups

Codename r Timestamp ∆P rnorm τ , sec vnorm Rdur Rvel pk pr+1

AEX 0 2007-08-17 15:29:00 11.05 48.71 540 0.09 7197.5 4229 0.91 0.59
CAC 1 2010-12-27 09:07:00 90.00 157.99 240 0.66 35422.0 3 0.01 0.19
DAX 0 2007-08-17 14:13:30 136.50 52.52 180 0.29 52378.0 51 0.43 0.88
FTSE 0 2005-07-07 10:18:30 50.50 79.00 30 2.63 166204.5 1 0.13 0.91
MIB 0 2011-07-12 10:28:30 585.00 50.35 480 0.10 9399.5 2023 0.40 0.68
IBEX 0 2005-07-07 11:36:00 72.00 51.99 240 0.22 34851.5 83 0.48 0.95
STOXX 0 2007-12-12 14:58:30 69.00 59.65 300 0.20 20796.0 109 0.32 0.68
OMXS 0 2008-01-22 14:19:30 39.00 43.85 240 0.18 26568.5 170 0.82 0.54
SMI 0 2005-07-07 11:34:30 48.00 59.08 180 0.33 50491.0 16 0.44 0.71
ES 0 2010-05-06 13:45:30 37.00 83.32 180 0.46 41386.0 3 0.46 0.58
DJ 0 2007-02-27 14:06:00 118.00 72.96 390 0.19 8516.0 132 0.36 0.87
NQ 2 2010-05-06 13:46:30 76.50 96.24 120 0.80 63285.5 1 0.02 0.55

2010-05-06 13:49:30 66.00 80.39 270 0.30 21747.5 18 0.07 0.55
HSI 0 2005-12-28 09:46:00 85.00 46.74 150 0.31 18731.5 4 0.64 0.87
HCEI 0 2007-02-28 10:08:00 214.00 44.19 300 0.15 6342.0 113 0.42 0.50
TAMSCI 1 2009-09-10 08:46:30 14.80 127.45 390 0.33 7408.0 11 0.01 0.80
NIFTY 0 2008-01-21 14:51:00 177.35 48.81 240 0.20 20630.0 59 0.46 0.84
NIKKEI 0 2011-03-15 13:09:30 270.00 31.14 510 0.06 1223.0 5485 0.77 0.90
TOPIX 0 2011-03-15 13:14:30 23.00 35.18 210 0.17 10823.0 28 0.36 0.98
ASX 0 2008-10-07 14:29:00 109.00 44.04 210 0.21 32578.5 30 0.21 0.90
BOVESPA 0 2011-12-01 10:17:30 1600.00 51.96 210 0.25 15834.0 33 0.21 0.57
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While being the best known, the “flash crash” of May 6, 2010 is not the largest one in
relative values in the data analysed here. A remarkable drawdown of rnorm = 214.99 (“215-
sigma event”) was experienced in the futures on the CAC index on December 27, 2010 at
09:03:00 CET. This “mini flash crash” at the opening of that trading day initially started
on the DAX index and quickly propagated to other other European markets through cross-
market arbitrage, many of which experienced large drawdowns. However, only for the CAC
and DAX futures contracts can this event be quantified as a “Dragon King” according to
our modified DK-test (18). The CAC futures contract recovered from the “mini flash crash”
via an extreme drawup of size rnorm = 157.99, which is also qualified as a dragon-king (the
hypothesis H0 that this event belongs to the overall distribution can be rejected).

These two “flash crashes” in US markets on May 6 and in Europe on December 27, 2010
represent endogenous events, where were not generated by external news but by a self-exciting
activity of the market participants. But not all dragon-king events are generated internally, as
illustrated by the plunge of European markets in response to the 7 July 2005 London bomb-
ings, when a series of coordinated suicide attacks targeted the civilian public transportation
system in central London during the morning rush hour. At that time, almost all analyzed con-
tracts experienced an outstanding drop and, for the CAC, DAX, FTSE and IBEX contracts,
these price fluctuations can be quantified as “Dragon Kings” of their respective drawdown
distributions.

In general, the Asian, Australian and South American contracts do not exhibit any out-
standing price fluctuations that can be quantified as “Dragon King”, with a single exception.
On the opening of the Taiwanese markets on September 10, 2009, the price of TAMSCI futures
contracts experienced a drawup with rnorm = 127.45. After the drawup of the CAC contract
following the “mini flash crash” described above, this is the largest normalized return over
all observed drawups for all analyzed contracts. This extraordinary drawup of the market
resulted from the announcements of an agreement between Taiwan and mainland China to
allow mainland investors to buy stocks in Taiwan.

Table 4 shows that some of the reported extreme (in terms of normalized return) draw-
downs and drawups are also the fastest. This is the case for the drawdowns observed for CAC,
SMI, ES, DJ and NQ and for the drawups for FTSE and NQ. However, the normalized speeds
of these events are not exceptional. Moreover, from the point of view of the speed statistics,
these events cannot be quantified as “Dragon Kings”. Table 5 (a) reports the “outliers” that
our modified DK-test detects in the distributions of the normalized speeds. None of the re-
ported “Dragon Kings” of the normalized returns (Table 4) is also exceptional in terms of
speed. The only common event in these two tables — the drawup for the FTSE contract
on 2005-07-07 10:18:30 GMT — cannot be quantified as a “Dragon King” with respect to
its normalized return rnorm (this is vividly illustrated in Figure 3). It is also interesting to
observe that, in general, the power law fit of the distribution of normalized speeds is more
robust than the distribution of normalized returns (Figure 3).

Finally, Table 5 (b) reports the “Dragon Kings” detected in the distributions of duration
τ and shows that all these events are not even close to be the largest or the fastest. This
raises naturally the issue of the dependence between these different measures. For this, we
will discuss the so-called tail dependence (dependence of extreme values) later in Section 8.
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Table 5: Characteristics of the “Dragon King” events in terms of (a) normalized speed vnorm and (b) duration τ .
For all analyzed contracts, only those set of events, for which hypothesis H0 can be rejected, are presented. Rret,
Rdur and Rvel denote the rank of the normalized return, duration and normalized speed of the corresponding
event.

(a) Normalized velocity, vnorm

Codename r Timestamp |∆P | |rnorm| τ , sec |vnorm| Rret Rdur pr pr+1

Drawdowns

FTSE 1 2011-09-02 13:30:00 81.50 34.90 30 1.16 16 165956 0.09 0.67

Drawups

FTSE 1 2005-07-07 10:18:30 50.50 79.00 30 2.63 1 166204.5 0.00 0.79
ES 1 2007-09-18 13:14:30 25.50 71.18 60 1.19 2 99839.5 0.03 0.95
NIKKEI 1 2005-12-08 12:58:30 100.00 16.70 30 0.56 10 59106.0 0.06 0.62

(b) Duration, τ

Codename r Timestamp |∆P | |rnorm| τ , sec |vnorm| Rret Rvel pr pr+1

Drawdowns

ES 1 2008-07-04 08:42:30 7.25 14.03 5670 0.00 436 135255 0.10 0.43
HSI 1 2006-03-08 10:35:00 66.00 4.70 3000 0.00 8871 47291 0.05 0.82
TAMSCI 1 2005-02-16 12:25:30 0.70 1.71 4770 0.00 66109 100446 0.02 0.93

Drawups

TAMSCI 1 2005-02-16 09:41:00 2.80 6.86 5640 0.00 5936 100478 0.03 0.95

7. Aggregated distributions

In the previous section, we have analyzed the distribution of normalized returns for indi-
vidual contracts. As discussed above, we are considering normalized characteristics of drawups
and drawdowns (such as returns rnorm and speeds vnorm), which allows us to compare directly
these values for events of different time periods and different assets. Moreover, we can aggre-
gate all values from different contracts, to check if our conclusions are robust with respect to
sampling.

Figure 7 presents the corresponding aggregated empirical distribution functions for the
normalized returns, speeds and durations, and the power law approximations of the tails of
these distributions. Table 6 lists the parameters of the power law fits (8).

These results validate our previous findings. First, fits of the distribution of draw-
downs/drawups are much more robust than for individual log-returns. Second, the reported
exponents of the power law tails for the aggregated distributions lie in the same range of val-
ues that we reported for individual contracts (see Figure 4). Third, the estimated exponent α̂
for drawdowns is significantly larger than the exponent α̂ for drawups (the difference is larger
than 6 standard errors).

Figure 7 and Table 6 show that the power law approximation of the normalized speeds
of drawdowns and drawups is almost perfect and holds for more than 5 orders of magnitude
in the vertical axis. In contrast, the fits of the tails of the distributions of durations are
relatively poor. In particular, the hypothesis that the distribution of drawup durations is a
power law can be rejected in favor of the stretched exponential distribution family using the
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Figure 7: Complementary cumulative distribution function (ccdf) for the (i) aggregated normalized returns, (ii)
aggregated normalized speeds and (iii) aggregated durations of drawdowns (red down triangles) and drawups
(green up triangles) for ε0 = 1 and ∆t = 30 sec. Black straight lines correspond to power law fits of the tails
of distributions of drawdowns (see Table 6). Red and green dots on the plot (i) correspond to distributions of
the aggregated normalized log-returns (3) over the time scale ∆t = 30 sec. The dashed black lines depict the
power law fits of the tails of these distributions (see Table 6).

Table 6: Estimates of the lower boundary x̂m and exponent α̂ of the power law fits (8) of the distributions
of (i) normalized returns rnorm, (ii) normalized speeds vnorm and (iii) durations τ for normalized drawdown
(DD) and drawup (DU), as well as for normalized log-returns (3): positive (RPos) and negative (Rneg). The
number of observations qualified in the power law tail (Nx≥x̂m), log-likelihood ratio (R) and p-values for the
significance of likelihood ratio test are also given.

Characteristic Event type x̂m α̂ Nx≥x̂m

rnorm

DD 17.62 4.64 ± 0.06 5197
DU 16.03 5.01 ± 0.07 5943

RNeg 3.55 4.12 ± 0.01 101512
RPos 3.03 4.25 ± 0.01 172093

vnorm DD 0.10 4.14 ± 0.02 39677
DU 0.10 4.32 ± 0.02 35911

τ
DD 960.00 4.46 ± 0.04 12322
DU 1020.00 4.46 ± 0.04 10871

nested Wilks’ test (Malevergne et al., 2005).
An important observation from Figure 7 is that the extreme events of individual distribu-

tions (Figure 3) also branch off the aggregated distribution. One can clearly see that up to
ten of the largest drawdowns and drawups deviate substantially from the power law fit of the
tail. Interestingly, the original (Pisarenko and Sornette, 2012) and the modified (Section 6)
DK-tests give contradictory and confusing results. However, “the absence of evidence is not
the evidence of absence”, which summarises the fallacy of the argumentum ad ignorantiam. In
other words, we argue that the failure to diagnostic the largest drawdowns as outliers reflects
the lack of power of these tests. As discussed above, the 15–20 extremes events in the tail
contribute substantially to the numerator in expression (16) and lead to a spurious identifica-
tion of up to 400 outliers in the tail (the H0 hypothesis is rejected for values of ranks r up to
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r = 400). On the another hand, the modified DK-test (18) sins at the other extreme by being
too conservative and fails to reject H0 for any r, because it requires the simultaneous rejection
of H0 for yr, yr+1, . . . , yN and the acceptance of H0 for yr+1, . . . , yN . This typically does not
occur when outliers are not a few far-standing events, but are organised with a continuous
and smooth deviation of the tail as in Figure 7.

To address this issue and test for the presence of a change of regime in the tail of the
distribution, we employ the parametric U-test (Pisarenko and Sornette, 2012), which tests
deviation of the tail with respect to the fitted power law distribution rather than with respect
to the rest of sample as in the DK-test. We present a slightly modified description of the U-
test from that found in (Pisarenko and Sornette, 2012) and provide a closed-form solution (20)
of the maximum likelihood estimation of the power law exponent.

We select the lower threshold xm for the calibration of the power law in the distribution
tail and apply the same nonlinear transformation (13) as for the DK-test. Then, by visual
inspection, we determine a candidate for the rank r such that observations smaller than yr+1

(i.e., of rank larger than r) are distributed according to the exponential distribution (14) and
the total number of outliers is not larger than r.

The exponent α of the exponential distribution (14) can be estimated with the Maximum
Likelihood method applied to the subsample yr+1, . . . , yN , where the likelihood with right-
censored observations is given by

L(α|yr+1, . . . , yN ) =
[
1− F (yr+1)

]r N∏
k=r+1

f(yk), (19)

where F (y) is the cdf of the exponential distribution (14) and f(x) = α exp(−αx) is the
corresponding pdf. The exponent α can then be estimated by maximizing logL. In the case
of an exponential distribution (14), this yields the closed form expression

α̂ = (N − r) ·

[
ryr+1 +

N∑
k=r+1

yk

]−1

(20)

The p-values that the k smallest ranks deviate from the null hypothesis of the exponential
distribution can be then obtained from the following equation (see derivations in Pisarenko
and Sornette (2012)):

pk = 1− B
(
F (yk);n− k + 1, k

)
, k = 1, . . . , r, (21)

where B(y; a, b) is the normalized incomplete beta-function, and the exponent α for the prob-
ability distribution (14) is taken to be equal to the MLE (20). The event yk for which
pk < p0 = 0.1 can be then diagnosed as an outlier with respect to the fitted exponential
distribution of the tail. This corresponds to the original event xk being a “Dragon-King”
with respect to the fitted power law distribution.

Table 7 presents results of the application of the U-test to the aggregated distribution
of normalized returns rnorm of drawdowns, where the threshold xm is selected by using the
Kolmogorov-Smirnov test (Table 6). The first important observation is that all “Dragon-King”
events that were detected for individual contracts (Table 4) are also quantified as belonging
to a different regime than the power law for the aggregated distribution. This supports the
findings of Section 6.
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Table 7: Detected outliers for the aggregated distribution of normalized returns of (a) drawdowns and (b)
drawups. Timestamps are given in local time. Individual p-values for each event are calculated using the
U-test (21). The last column of the tables indicates if an event is the largest in the individual distribution (E),
or if it was also quantified as a “Dragon-King” in the corresponding individual contract (DK) — see Table 4.

(a) Drawdowns

Codename Timestamp |rnorm| p

CAC 2010-12-27 09:03:00 214.99 0.04 DK
FTSE 2005-07-07 10:14:00 176.46 0.01 DK
DJ 2010-05-06 13:41:30 165.04 0.00 DK
NQ 2010-05-06 13:41:30 149.19 0.00 DK
IBEX 2005-07-07 11:14:00 147.75 0.00 DK
ES 2010-05-06 13:41:30 132.62 0.00 DK
SMI 2005-07-07 11:25:30 121.38 0.00 E
DAX 2010-12-27 09:02:30 119.51 0.00 DK
DAX 2005-07-07 11:14:00 112.25 0.00 DK
CAC 2005-07-07 11:14:00 109.91 0.00 DK
FTSE 2005-07-07 09:52:30 97.73 0.00 DK
CAC 2005-07-07 11:24:00 89.73 0.00 DK
SMI 2005-07-07 11:14:30 88.45 0.00
MIB 2005-07-07 11:14:30 88.45 0.00 E
STOXX 2005-07-07 11:14:00 78.21 0.00 E
DJ 2007-02-27 13:51:00 72.73 0.00
DJ 2008-09-29 12:42:00 70.16 0.00
AEX 2005-04-01 17:13:30 68.71 0.01 E
NIFTY 2011-06-20 10:09:30 67.75 0.00 E
IBEX 2007-04-24 10:46:00 65.28 0.01
AEX 2010-12-27 09:03:30 63.57 0.02
ES 2008-09-29 12:42:00 63.45 0.01
HSI 2006-03-07 10:00:30 62.50 0.02 E

(b) Drawups

Codename Timestamp rnorm p

CAC 2010-12-27 09:07:00 157.99 0.06 DK
TAMSCI 2009-09-10 08:46:30 127.45 0.01 DK
NQ 2010-05-06 13:46:30 96.24 0.04 DK
ES 2010-05-06 13:45:30 83.32 0.07 E
NQ 2010-05-06 13:49:30 80.39 0.04 DK
FTSE 2005-07-07 10:18:30 79.00 0.02 E
DJ 2007-02-27 14:06:00 72.96 0.03 E
ES 2007-09-18 13:14:30 71.18 0.02
CAC 2007-12-12 14:58:30 66.59 0.05
ES 2007-02-27 14:06:30 64.01 0.06

However, not all extremes (events with rank 1) of the individual contracts are present
n the upper tail of the aggregated distribution. For drawdowns, the extreme tail of the
aggregated distribution contains mostly events from European and US markets. For example,
the extreme drawdowns for OMXS, HCEI, TAMSCI, NIKKEI, TOPIX, ASX and BOVESPA
are not qualified as an outliers (neither they were reported as “Dragon-Kings” at the individual
level). For drawups, the number of detected outliers is much smaller than for drawdowns.

On the contrary, several events classified as outliers at the aggregate level were not reported
as individual “Dragon-Kings” using the (conservative) modified DK-test. For example, we
were unable to reject the null hypothesis H0 for the two largest events occurring in the SMI
futures contracts (Figure 3). For r = 2, we report the following p-values: p1 = 0.03, p2 = 0.13
and p3 = 0.47; for r = 3, we obtain p-values: p1 = 0.01, p2 = 0.05, p3 = 0.47 and p4 = 0.99.
In both cases, one inequality of the system (18) does not hold. This results from the fact that
the second event x2 is not sufficiently larger than x3, which leads to the absence of rejection
of the null (no dragon-kings) for r = 2 (p2 = 0.13 > 0.1). And the third event x3 only slightly
deviates from the tail (p3 = 0.47 for r = 3), which leads to the absence of rejection of the null
for larger r values.

Finally, all events detected as outliers of the aggregate distribution (Table 7) can be
detected in their corresponding individual distributions using the U-test. However, being
dependent on the calibration of the exponent of the power law, the U-test is subjected to
estimation errors that need to be accounted properly. The nonparametric DK-test is free from
this drawback, at the cost of having more limited power. In general, as with any statistical
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Figure 8: Tail dependence coefficients λu for normalized returns rnorm and normalized speeds vnorm (solid
lines) and for normalized returns rnorm and durations τ (dashed lines) of the aggregated drawdowns (red) and
drawups (green) for different contracts and different probabilities u.

testing problem, it is always a good practice to consider several different tests to confirm the
conclusions.

8. Tail dependence characteristics of extreme drawdowns

Are extreme drawdowns (drawups) associated with the largest speed and/or the longer
durations? Clarifying the interdependence between size, speed and duration of extreme draw-
down (drawups) is important to better understand their generating mechanism. In previous
sections, we have already commented that events that are extreme with respect to one char-
acteristic may not be extreme with respect to another (see Tables 4 and 5). The largest
(with respect to rnorm) drawdowns and drawups are often not the fastest, and by far not the
longest events in the population. The occurrence of an extreme normalized speed vnorm does
not ensure that the event will have an extreme size. Moreover, the longest drawdowns and
drawups typically have relatively small returns.

Our goal here is to quantify the mutual interdependence between size, speed and duration.
Generally, the complete information about the dependence between two random variables X
and Y is contained in their copula structure. Here, we consider a simpler metric, the tail
dependence, which is defined at the probability of observing a very large value of one variable
conditional on the occurrence of a very large value of the other variable (Malevergne and
Sornette, 2005):

λ = lim
u→1

λu = lim
u→1

Pr[X > F−1
X (u)|Y > F−1

Y (u)], (22)

where FX(·) and FY (·) are the marginal cumulative distributional functions of X and Y . In
practice, it is difficult to work with the asymptotic tail dependence λ, which is defined in the
empirically unattainable limit u→ 1. We will thus consider λu for fixed value of probability
u . 1 and document the behaviour of λu as u approaches 1 from below.
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Figure 8 shows the non-asymptotic tail dependence coefficients λu of (i) X = rnorm and
Y = vnorm and (ii) X = rnorm and Y = τ for the aggregated probability distributions
F (rnorm, vnorm) and F (rnorm, τ) (marginal distributions are presented in Figure 7). In other
words, figure 8 quantifies the probability that the observed drawdown is large, conditional on
it being (i) fast or (ii) long. One can observe that λu of the normalized returns conditional on
the durations decreases monotonously with u and converges to zero as u→ 1. This indicates
an absence of dependence of the extreme values of size and durations. In other words, the
longest drawdowns and drawups do not belong to the highest quantiles in term of sizes.

On the contrary, the tail dependence λu between returns and speed is significant and
tends to increase for u → 1, except very close to 1 (u > 0.9997) due to the finite size of the
data sample. The estimated value of the tail dependence λu between returns and speed is
approximatively in the range 0.09 − 0.12 for drawdowns and 0.075 − 0.12 for drawups, i.e.,
conditional on a very large speed, there is about a 10% probability that the corresponding
drawdown (drawup) is extreme in normalised return. Figure 9, which presents the tail de-
pendence coefficients λu at three probability levels u = 0.990, 0.995 and 0.999 for individual
contracts, supports our previous findings at the aggregate level. With the exception of the
OMXS, HCEI and ASX contracts that are characterised by monotonously decaying λu, all
other analyzed future contracts exhibit clear signatures of non-zero tail dependence with λu
varying in the range 0.03−0.035 (for NIKKEI, TOPIX) and 0.1−0.12 (for CAC, DAX, AEX,
STOXX, DJ, NIFTY).
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Figure 9: Tail dependence coefficient λu between normalized returns rnorm and normalized speeds vnorm of
drawdowns (red bars) and drawups (green bars, inverted x-axis) for different contracts and different probability
levels u. The last row corresponds to the aggregated distributions.

9. Conclusion

We have investigated the distributions of ε-drawdowns and ε-drawups of the most liquid
futures financial contracts of the world at time scales of 30 seconds. The ε-drawdowns and
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ε-drawups defined by expressions (5) with (6) are proposed as robust measures of the risks
to which investors are arguably the most concerned with. The time scale of 30 seconds for
the time steps used to defined the drawdown and drawups is chosen as a compromise be-
tween robustness with respect to microstructure effects and reactivity to regime changes in
the time dynamics. Similarly to the distribution of returns, we find that the distributions of
ε-drawdowns and ε-drawups exhibit power law tails, albeit with exponents significantly larger
than those for the return distribution. This paradoxical result can be attributed to (i) the
existence of significant transient dependence between returns and (ii) the presence of large
outliers (termed dragon-kings (Sornette, 2009; Sornette and Ouillon, 2012)) characterizing
the extreme tail of the drawdown/drawup distributions deviating from the power law. We
present the generalised non-parametric DK-test together with a novel implementation of the
parametric U-test for the diagnostic of the dragon-kings. Studying both the distributions of
ε-drawdowns and ε-drawups of individual future contracts and of their aggregation confirm
the robustness and generality of our results. The study of the tail dependence between draw-
down/drawup sizes, speeds and durations indicates a clear relationship between size and speed
but none between size and duration. This implies that the most extreme drawdown/drawup
tend to occur fast and are dominated by a few very large returns. These insights generalise
and extend previous studies on outliers of drawdown/drawup performed at the daily scale
(Johansen and Sornette, 2001, 2010).
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